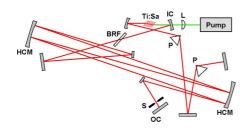


R&D ULTRAFAST LASERS LTD.

FemtoRose 300 TUN LCTM

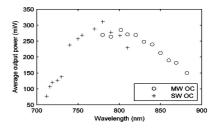
Tunable, Low Repetition Rate, Femtosecond Pulse Ti:Sapphire Laser

Key features


- Low pump laser cost (~ 2.6 W pumping)
- Low, 22 MHz repetition rate
- Higher fluorescence signal
- Lower thermal damage in sample
- No extra-cavity chirp control is required
- Wavelength control by a Zeiss 2P microscope

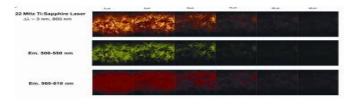
Applications

- Multiphoton microscopy
- Ultrafast spectroscopy


Our new FemtoRose 300 TUN LC NoTouchTM laser is developed for nonlinear microscopy and time resolved spectroscopy applications. It comprises a 3 W, 532 nm pump source and a control unit, which allows hands free operation. The laser operation wavelength can be directly set by a Zeiss Axio Examiner microscope (ZEN software compatible). To best of our knowledge, this is the first femtosecond pulse, broadly tunable Ti:sapphire laser on the market operating at a ~22 MHz repetition rate. The laser utilizes our patented, ultrabroadband, ion-beam sputtered chirped mirrors for building a low loss laser cavity. The low repetition rate results in a higher signal to noise ratio, a lower photo-degradation of the biological samples and a more cost efficient construction than in case of its ~80 MHz predecessors, and hence this laser construction is ideal for *in vivo* nonlinear microscopy applications.

Schematic of the oscillator

L: pump focusing lens, IC: input coupler mirror, Ti:Sa: titanium-sapphire crystal, BRF: birefringent filter for tuning, P: prisms, HCM: Herriott-cell mirrors, OC: output coupler, S: slit for hard-aperture KLM


Typical measured output power vs. wavelength (at 2.6 W pump)

Two different output couplers were used for short wavelengths (SW OC, crosses) and for longer wavelengths (MW OC, circles).

Antal P, Szigligeti A, Kolonics A, Szipõcs R; Tunable, Low Repetition Rate, Femtosecond Pulse Ti:Sapphire Laser for In Vivo Imaging by Nonlinear Microscopy; In: Optics int he Life Sciences Congress (OSA, 4-6 April 2011, Monterey, CA) Paper JTuA12, 2011

Application for 2P microscopy

The autofluorescence of keratin is detected by a Zeiss Axio Examiner microscope.

System Specifications (preliminary):

Average output power (Opus $^{TM},~2.6~W$): > 250 mW Tuning range (Opus $^{TM},~2.6~W$): 715 nm to 880 nm

Pulse duration at laser output: $\sim 300~\mathrm{fs}$

Spectral bandwidth: < 4 nm

Repetition Rate: ~ 22 MHz, nominal

Phone/Fax: +36 (1) 392 2582

r.szipocs@szipocs.com

Spatial Mode: TEM00 Polarization: Horizontal

Physical dimensions: 120 x 62 x 18 cm³